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1. INTRODUCTION AND RESULTS

Most problems in approximation theory deal with approximating functions
in an infinite dimensional normed linear function space using an increasing
sequence of finite dimensional subspaces. However, it is also of interest
and importance to consider the problem of approximation using subspaces
of finite {or even small) codimension.

Let X be a normed linear function space and let M, C X be an ideal
corresponding to functions which vanish on a “‘small” set &, . Let my{(f)
denote a Dest approximant (if it exists) to f from M, . Hence, S (f} =
J — my(f) interpolates fon Ey and will be called a minimal norm interpclant
of f. If the sets E; satisfy

o

E,CE,C-, (L.

N

then the study of the rate of decrease of | f— s (F)l = || my(f) is related
to the problem of convergence of the interpolants of /" with minimal norm.
Such questions have been previously considered in the setting of Sobolev
spaces (cf. [1, 2, 4, 5]).

In this note the rate of convergence of minima! norm interpolants is
studied in the case where X is the disc algebra 4. For this situation, the non-
trivial ideals considered correspond to the subspaces of functions which
vanish on a closed set E, of measure zero on the boundary T of the unit
disc D in the complex plane. Our main result is the following.

THEOREM. Let fe A and let E, N =1, 2...., be closed subsets of 7 of
measure zero such that

gl
)

yw = log(l flIx/il fiigy) — 0.
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Then there exist minimal norm interpolants sy of f satisfying f — sy € My =
{ge A: g(Ey) = O} such that

I/ — sn || = Olyw)- (1.3)

Moreover, this rate of convergence is sharp in the sense that O(yy) cannot be
replaced by o(yy).

In certain function spaces the rate of convergence is easily established.
For instance, let X = C[0, 1] and My = {fe C[0, 1]: f(Ey) = 0} where
E\ are finite point sets in [0, 1] satisfying (1.1). It is well known that My
is a proximinal subspace and that dist(f, My) = [ flg, |l It is also easily
seen that for each fe C[0, 1] there exists an my € My so that || f — sy(f)] =
Iy | = 1. Tfo.ney | — 1 Ly | = 7y 0. Furthermore, if Ty(f) is any
other interpolant of f on F, with minimal norm, then || f — Tx(f)| = vu -

Less obvious is the case of the disc algebra 4. Unlike the case C[0, 1],
neither the proximinality of the ideal My = {g€ 4: g |¢, = 0} nor the rate
of convergence of minimal norm interpolants is clear although the former
question is more easily handled than the latter. In fact from [3] and [6] the
ideals in A described above are known to be M-ideals which in turn are
known to be proximinal [8]. The answer to the latter question is less obvious
and as the following example shows care should be exercised in selecting
the minimum norm interpolants in order to guarantee convergence to f.

Exampre. Let E, denote the set of all 2¥th roots of unity and My =
{feA:f(Ey) = O} It is easily checked that my = 1 — 22" is a best ap-
proximant to f(z) = 1; however, sy = f — my = 22" does mnot converge
to fin A.

In light of this example, the above theorem may be viewed as an existence
theorem since it establishes a sequence of minimuwm norm interpolants
which converges to f.

2. Proor oF THEOREM

In what follows, E, will denote a closed subset of measure zero of the unit
circle T in the complex plane, 4 the disc algebra, M, the subspace

My={geA:glg, =0} (2.1)

and my =my(f) a best approximant to a given fe 4 from M, . Also,



2
Nel
o
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A{Ey . Ty will designate the Hausdorff distance between £, and 7. Set

P(w) — 71; [" vy P8 — rya

1) =5 [ w0 S ar

where = = re* and P(0 — 1) = Refe’ + z)/(¢"t — z)}, so that P(w) =
Re H.(w). We are now able to prove the main result in this note,
Choose any py such that 0 << py — o0 and pyyy — 0. Hence 1 <( fly/
.flle,)e~ — 1. Then it follows that
Frn(z) = pxlog( f)] filgy) <1 (2.2

for all ze T and all large &, and Fy(z) < 0 if z € £ . Choose a real-valued
function wy on T such that

wy(z) = —oo on Ey, wy(z) > — oo continuously as z — Fy,
wp(z) < —lon T, (2.3}
wyl)is Cton T — Ey, and
wi() e LYT).

Hence, —1 <C I/wy(2) << 0 holds for all z, and wy(z) == ¢ only if ze £,

and wy is in Cl(T Ey) N C(T).

Since —Fy(2) =0 on Ey and —Fy(z) > —1 on T, we can choose w
so that w satisfies the additional condition 1/w, < —F, on 7. This 1mph°s
—1jwy = Fy on T so that —1/P,(wy) = Fy(z) on T and —1/pyPwy) =
log(1 f(2)l/il file,,)- Set gy(z) = ellioxHswn) Following the proof of Fatou's
theorem {(cf. [7, p. 80]), l/H.(wy)e A, Re1/H (wy) <0, and }/H,(ry)
equals zero only on Ey. Hence dye 4, 1 ¢y <1 and ¢,{(z) = 1 if and
only if z e E, . Since p, diverges to infinity. &, converges to | uniformly
on 7. Also, on T for large N,

| F(2) dul2)] = | f(2)] eRELionHLtmN) — | f(2)| eREN ) iogl Lyt
. "f(7>[ el’z(uw).r'oNle(uu\rH‘-E < ‘\f("\‘\ eP:(L-"Ni Con Bl 12
. “ S Z})
= [ f(2) /0NN [ | fl,. (2.4)
Thus, setting my = f(1 — ¢y) the following properties are evident:

ma(z) =0 if zeEy,
| mu(2) — F@ =1 f(2) dn(@| <Ifllg, forall ze7. and
lmyl <Iflll ¢y —1[—0 as N- 0. (2.5
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Hence, one deduces that for sy = f — my,

If—snll = Ol éx— 1))

— 0(” el/(pNHz(wN)) —1 I‘v)

/ 1
= O (et
But since 1/(| py Hu(w)l) < 1l puPuliwx)ls — 0 < wa(z) < —1 and

1 T
== L PO — 1)dt =1

we have 1/(|| pxP(wy)l) < 1/py so that || f— syl = O(1/py) for all py
for which pyyy converges to 0. But an easy argument shows that actually

Lf — snll = Olyy).
To prove the sharpness of (1.2), we assume that || f — sy || = O(ry) where
ry — 07 but r3t|| f — sy is bounded away from zero. It must be shown

that vy = O(ry). Pick N sufficiently large so that [ f1le, = l1£1/2. Let

xy=({fl— HfHEN)/”fHEN-
Then
< KA =11/ ley]

for some constant & > 0. Since In(1 4+ x) — x == O(x?) as x — 07, we have
for all large N,

< 26— 1S ey

yr =In(l 4 xy) <2
<2k || f— syl = Ory).

The above inequalities follow from the relations

W —=ssll == —mNZ 11— 1 —mnll =11 = i flley

and || f — my || = || flg, if my is a best approximant to f from M) . This
completes the proof of the theorem.
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