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1. INTRODUCTION AND RESULTS

Most problems in approximation theory deal with approximating funcrions
in an infinite dimensional normed linear function space using an increasing
sequence of finite dimensional subspaces. However, it is also of interest
and importance to consider the problem of approximation using subspaces
of finite (or even small) codimension.

Let X be a normed linear function space and let AI", C X be an ideal
corresponding to functions which vanish on a "small" ser EN' Let mN(f)
denote a best approximant (if it exists) to / from M N • Hence, SN(f) =
/ - ml'lf) interpolates/on EN and will be called a minimal norm interpolant
of f If the sets E; satisfy

(Ll)

then the study of the rate of decrease of [1/ - SN(n:~ = diJ1N(f)I! is related
to the problem of convergence of the interpolants of f with minimal norm.
Such questions have been previously considered in the setting of Soholev
spaces (cf. [I, 2, 4, 5]).

In this note the rate of convergence of minimal norm i:1terpolants is
studied in the case where X is the disc algebra A. For this situation, the non
trivial ideals considered correspond to the subspaces of functions which
vanish on a closed set EN of measure zero on the boundary T of the unit
disc D in the complex plane. Our main result is the following.

THEOREM. Let fE A and let EN, N = 1, 2, ... , be closed subsets of T oj
measure zero such that

YN = log(I!/IIT/il/ikJ -> o. (1.2)
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Then there exist minimal norm interpolants SN 011 satislying I - SN E M N=
{g E A: g(EN) = o} such that

(1.3)

Moreover, this rate 01 convergence is sharp in the sense that O(YN) cannot be
replaced by O(YN)'

In certain function spaces the rate of convergence is easily established.
For instance, let X = C[O, 1] and M N = {IE C[O, l]:f(EN ) = O} where
EN are finite point sets in [0, 1] satisfying (1.1). It is well known that M N

is a proximinal subspace and that dist(f, M N ) = [[liEN II. It is also easily
seen that for each/E C[O, 1] there exists an mNE M N so that [II - SN(f)[[ =

I[ mN [[ = 11/1[o,l]\EN II - [[liEN II = YN ~ 0. Furthermore, if TN(f) is any
other interpolant of Ion EN with minimal norm, then 1[1 - TN(f)[[ ~ YN'

Less obvious is the case of the disc algebra A. Unlike the case C[O, 1],
neither the proximinality of the ideal M N = {g E A: glEN = O} nor the rate
of convergence of minimal norm interpolants is clear although the former
question is more easily h:mdled than the latter. In fact from [3] and [6] the
ideals in A described above are known to be M-ideals which in turn are
known to be proximinal [8]. The answer to the latter question is less obvious
and as the following example shows care should be exercised in selecting
the minimum norm interpolants in order to guarantee convergence to f

EXAMPLE. Let EN denote the set of all 2N th roots of unity and M N =
{IE A:f(EN ) = O}. It is easily checked that m N = 1 - Z2

N
is a best ap

proximant to f(z) - 1; however, SN = 1- m N = Z2
N

does not converge
to I in A.

In light of this example, the above theorem may be viewed as an existence
theorem since it establishes a sequence of minimum norm interpolants
which converges to f

2. PROOF OF THEOREM

In what follows, EN will denote a closed subset of measure zero of the unit
circle T in the complex plane, A the disc algebra, M N the subspace

(2.1)

and mN = mN(f) a best approximant to a given IE A from M N . Also,
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Li(E" , T) will designate the Hausdorff distance between EN and T. Set

1 .rr

Piw) = 2 J 1I{t) P,.(B - t) dt,
Tr -IT

1 JTT eit + z
Hz(w) =-2 \r(t)-"t--- dt

7T --;7" e l. - z

where ;;; = rew and Pr(B - t) = Re{eit --;-- z);'(e it - .::)}, so that Pz(n,) =
Re Hz(w). We are now able to prove the main result in this note.

Choose any PN such that 0 < PN -+ 00 and ()N'YN -+ O. Hence 1 :::::::; (fiPITi
IlfIIE)PN -+ 1. Then it follows that

(2.2)

for all ;: E T and all large N, and FN(z) :::::::; 0 if Z E E" . Choose a real-valued
function lI's on T such that

H'N(Z) = -00 on EN, \l'N(Z) -+ -00 continuously as z -+ EN,

H'N(Z) ~ -Ion T,

w,vO is Clan T - EN , and

!I"NO E D(T).

(2.3)

Hence, -1 :::::::; 1jwN(z) :::::::; 0 holds for all z, and wN(z) = (0 only if Z E Ex
and lI'x is in Cl(T\EN ) n C(T).

Since -FN(z) ~ 0 on EN and -FN(z) > -Ion T, we can choose Ii'."!

so that lI'N satisfies the additional condition l/wN ~ -FN on T. This implies
-l/\V~.. ? F v on T so that -1/PzCH'N) ? EN (::) on T and -l/PN PzCwN ) ?
log(lf(z)lfilfiIE,,,J Set <PN(;;;) = e(l!PNHz{WN)). Following the proof of Faron's
theorem (cf. [7, p. 80]), I/HzCwN) E A, Re I/HzClVN ) ~ 0, and l/Hil1'.v)
equals zero only on EN' Hence <PN E A, I cP,v ! ~ 1 and <p].,-(z) = 1 if and
only if Z E EN' Since PN diverges to infinity. <PN converges to I uniformly
on T. Also, on T for large N,

= I fez) el/(PNP,(WN») I ~ linEN'

Thus, setting inN = f(1 - <PN) the following properties are evident:

(2.4)

InN(Z) = 0 if Z E EN,

I mN(z) - f(z)1 = I fez) <PN(Z)1 :::::::; IlfllEN for all z EO T,

[I inN II :::::::; [Iflill <PN - 111-+ 0 as N -+ 00.

and

(2.5)
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Hence, one deduces that for SN = f - mN'

II! - SN II = 0(11 epN - 111)

( 1 )
= 0 \ II PNHz(wN)11 .

But since 1/(11 PNHzC!t'N)II) ~ 1/11 PNPzCwN)II, - 00 < wN(z) < -1 and

1 In27T -7f P,.(B - t) dt = 1

we have l/Cil PNPzCwN)11) < l/PN so that Ilf - SN II = OO/PN) for all PN
for which PNYN converges to O. But an easy argument shows that actually
Ilf - SN II = O(YN)'

To prove the sharpness of (1.2), we assume that Ilf - SN II = O(rN ) where
I'N ~ 0+ but I'll II! - SN II is bounded away from zero. It must be shown
that YN = O(rN). Pick N sufficiently large so that IlfIIE

N
~ lifll(2. Let

Then

for some constant k > O. Since InO + x) - x = 0(x2) as x ~ 0+, we have
for all large N,

')'N = InO + XN) ~ 2XN ~ 2k[llfll -llfllEN]

~ 2k Ilf - SN II = O(rN)'

The above inequalities follow from the relations

Ilf - SN II = III - (f - J11 N )II ~ Ilfll - Ilf - mN II = Ilfll - :If11EN

and Ilf - mN II = IlflIE", if inN is a best approximant to f from M N . This
completes the proof of the theorem.
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